果蝇属于双翅目果蝇科,目前,全世界已知4000多种,我国已知600多种。它们体型小巧,大概2~3mm,身体淡黄至黄褐色,大都具有硕大的红色复眼。其中,最为出名的就是黑腹果蝇Drosophila melanogaster,它是一种原产于热带或亚热带的蝇种,如今已经和人类一样广布于全世界。

果蝇因其独特的生物学特性,如繁殖速度快、生命周期短、易于遗传操作等,自20世纪初以来就成为了遗传学研究的首选模型生物。这些特性使得科学家能够快速进行实验,观察遗传变异,并深入理解遗传机制。
在科学史上,果蝇扮演了不可替代的角色,尤其是在遗传学领域,小小的果蝇帮助科学家们拿下了六次诺贝尔奖。托马斯·亨特·摩根在1910年代使用果蝇作为实验模型,揭示了染色体作为遗传信息载体的角色,这一里程碑式的发现为现代遗传学奠定了基石,并为他赢得了1933年的诺贝尔生理学或医学奖。紧随其后,赫尔曼·约瑟夫·穆勒因发现X射线能诱导遗传突变,于1946年获得诺贝尔奖。1995年,三位科学家因利用果蝇揭示早期胚胎发育的遗传控制机制而共同获得诺贝尔奖。2004年,理查德·阿克塞尔和琳达·巴克因对嗅觉受体和信号传导途径的研究获得诺贝尔奖,他们的工作部分基于果蝇的研究。2011年,朱尔斯·霍夫曼和布鲁斯·博伊特勒因发现先天免疫反应的激活机制而获诺贝尔奖,其中霍夫曼的研究涉及到果蝇。2017年,杰弗里·霍尔、迈克尔·罗斯巴什和迈克尔·扬因发现控制昼夜节律的分子机制,利用果蝇作为模型生物,获得了诺贝尔生理学或医学奖。这些成就凸显了果蝇在遗传学及其它生物学领域研究中不可或缺的地位。
一直以来,果蝇在发育生物学、神经生物学、行为遗传学以及疾病模型研究中都发挥了极其重要作用,帮助科学家们揭示了众多生物学过程和疾病机制。华美生物提供果蝇研究相关的蛋白、抗体产品,为您在果蝇科学方向上的研究助力。
● 果蝇科学研究相关蛋白:

Recombinant Drosophila melanogaster Stress-activated protein kinase JNK (bsk)
CSB-BP310094DLU
-SDS.jpg)
Recombinant Drosophila melanogaster Sterile alpha and TIR motif-containing protein 1
CSB-EP764228DLU1(M)

Recombinant Drosophila melanogaster GEO11329p1 (ITP)
CSB-MP3350DLU

Recombinant Drosophila melanogaster Nuclear RNA export factor 2 (nxf2), partial
CSB-BP016219DLU
● 果蝇科学研究相关抗体:
产品名称 | 货号 | 靶点 | 反应种属 | 应用范围 |
---|---|---|---|---|
beta-Spec Antibody | CSB-PA251598XA01DLU | beta-Spec | Drosophila melanogaster (Fruit fly) | ELISA, WB |
brat Antibody | CSB-PA839760XA01DLU | brat | Drosophila melanogaster (Fruit fly) | ELISA, WB |
CG8889-RA Antibody | CSB-PA227598 | CG8889-RA | Drosophila melanogaster | ELISA, WB |
Chc Antibody | CSB-PA333472XA01DLU | Chc | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Cpr Antibody | CSB-PA635658XA01DLU | Cpr | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Dop1R1 Antibody | CSB-PA334865XA01DLU | Dop1R1 | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Ets21C Antibody | CSB-PA326915XA01DLU | Ets21C | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Fbxl4 Antibody | CSB-PA064959 | Fbxl4 | Drosophila melanogaster | ELISA, WB |
FMRFaR Antibody | CSB-PA893353XA01DLU | FMRFaR | Drosophila melanogaster (Fruit fly) | ELISA, WB |
FMRFaR Antibody | CSB-PA893353XA11DLU | FMRFaR | Drosophila melanogaster (Fruit fly) | ELISA, WB |
ftz-f1 Antibody | CSB-PA339334XA01DLU | ftz-f1 | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Inx6 Antibody | CSB-PA895180XA01DLU | Inx6 | Drosophila melanogaster (Fruit fly) | ELISA |
Nmdar1 Antibody | CSB-PA634509XA01DLU | Nmdar1 | Drosophila melanogaster (Fruit fly) | ELISA, WB |
nos Antibody | CSB-PA340723XA01DLU | nos | Drosophila melanogaster (Fruit fly) | ELISA, WB |
osk Antibody | CSB-PA333049XA01DLU | osk | Drosophila melanogaster (Fruit fly) | ELISA, WB |
pho Antibody | CSB-PA848344XA01DLU | pho | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Piezo Antibody | CSB-PA562252XA01DLU | Piezo | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Prim1 Antibody | CSB-PA630508XA01DLU | Prim1 | Drosophila melanogaster (Fruit fly) | ELISA, WB |
pum Antibody | CSB-PA326575XA01DLU | pum | Drosophila melanogaster (Fruit fly) | ELISA, WB |
sfl Antibody | CSB-PA894173XA01DLU | sfl | Drosophila melanogaster (Fruit fly) | ELISA, WB |
stau Antibody | CSB-PA329523XA01DLU | stau | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Tet Antibody | CSB-PA145385XA01DLU | Tet | Drosophila melanogaster (Fruit fly) | ELISA, WB |
Tet Antibody | CSB-PA145385XA11DLU | Tet | Drosophila melanogaster (Fruit fly) | ELISA, WB |
果蝇相关最新研究进展:
做为一种至关重要的模式生物,果蝇长期出现在各个研究领域中。Finetti等人(2020年)证明单萜类化合物可以作为果蝇物种中的生物杀虫剂,并引起需要功能性1型酪胺受体(TAR1)的行为改变。在D. melanogaster中,TAR1主要在特定的大脑区域表达,影响甘油三酯水平、食物摄入和运动活动 [1]。Skerlova等人(2020年)展示了黑腹果蝇谷胱甘肽S-转移酶Epsilon 14的晶体结构,为其功能提供了洞见 [2]。Landis等人(2020年)概述了D. melanogaster寿命测定方法,强调了作为衰老研究模型的重要性 [3]。Delbare等人(2020年)强调了微生物组相互作用和交配对D. melanogaster雌性转录组的影响 [4]。Schwarz等人(2020年)揭示了Tirant转座元素在D. melanogaster种群中的入侵,而没有诱发杂交病症状 [5]。此外,Ekka等人(2021年)评估了二氧化硅-二氧化钛核壳纳米复合材料对D. melanogaster体内毒性,强调了理解潜在环境影响的重要性 [6]。Wallace等人(2021年)报告了在欧洲与D. melanogaster相关联的DNA病毒的发现,为节肢动物的抗病毒免疫提供了见解 [7]。Raji等人(2021年)提供了果蝇和蚊子大脑中神经元总数的实验证据,突出了昆虫物种作为研究脑功能的模型系统的价值 [8]。而且,Zhang等人(2021年)调查了一种影响黑腹果蝇宿主蛹期和繁殖力的新发现的cripavirus,展示了生态系统内的复杂相互作用 [9]。Biglou等人(2021年)提供了果蝇等模式生物中胰岛素信号通路的概述,强调了胰岛素信号通路在物种间的保守功能 [10]。这些研究共同强调了黑腹果蝇作为多样化研究领域中多功能模型生物的重要性。
参考文献:
[1] Luca Finetti, Lasse Tiedemann, Xiaoying Zhang, et al. Monoterpenes Alter TAR1-driven Physiology in Drosophila Species", THE JOURNAL OF EXPERIMENTAL BIOLOGY, 2020.
[2] J. Skerlova, H. Lindstrom, B. Sjodin, et al. Crystal Structure of Drosophila Melanogaster Glutathione S-transferase Epsilon 14 in Complex with Glutathione and 2-methyl-2,4-pentanediol, 2020.
[3] Gary N Landis, Devon Doherty, John Tower, Analysis of Drosophila Melanogaster Lifespan", METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.), 2020.
[4] Sofie Y. N. Delbare, Yasir H. Ahmed-Braimah, et al. Interactions Between The Microbiome and Mating Influence The Female's Transcriptional Profile in Drosophila Melanogaster, SCIENTIFIC REPORTS, 2020.
[5] Florian Schwarz, Filip Wierzbicki, Kirsten-André Senti, et al. Tirant Stealthily Invaded Natural Drosophila Melanogaster Populations During The Last Century, MOLECULAR BIOLOGY AND EVOLUTION, 2020.
[6] Basanti Ekka, Gyanaseni Dhar, Sumanta Sahu, et al. Removal of Cr(VI) By Silica-titania Core-shell Nanocomposites: In Vivo Toxicity Assessment of The Adsorbent By Drosophila Melanogaster, CERAMICS INTERNATIONAL, 2021.
[7] M. A. Wallace, K. A. Coffman, C. Gilbert, et al. The Discovery, Distribution and Diversity of DNA Viruses Associated with Drosophila Melanogaster in Europe, BIO.MICROBIOLOGY, 2021.
[8] Joshua I Raji, Christopher J Potter, The Number of Neurons in Drosophila and Mosquito Brains, PLOS ONE, 2021.
[9] Jiao Zhang, Fei Wang, Bo Yuan, et al. A Novel Cripavirus of An Ectoparasitoid Wasp Increases Pupal Duration and Fecundity of The Wasp's Drosophila Melanogaster Host", THE ISME JOURNAL, 2021.
[10] Sanaz G Biglou, William G Bendena, Ian Chin-Sang, An Overview of The Insulin Signaling Pathway in Model Organisms Drosophila Melanogaster and Caenorhabditis Elegans, PEPTIDES, 2021.